亚洲成a人v欧美综合天堂_欧美日韩国产在线观看一区二区三区_亚洲国产欧美日韩第一香蕉_久久综合九色欧美综合狠狠

Welcome to the USA KINO: The world leading supplier of contact angle meter, surface & interfacial tensiometer &TOF camera
Work of adhesion and Young-Laplace equation--Theory of surface tension, contact angle, wetting and work of adhesion (4)
2018-9-2 12:03:18

1.4 Work of adhesion and cohesion

If two phases (α and β) in contact are pulled apart inside a third phase ω, the original interface is destroyed and two new interfaces are formed (see Figure as shown below).

contact angle and surface tension

 

The work energy per unit area in performing this operation is called the work of adhesion, Wαβ. There is a contribution from each interface removed from or added to the system:

Wαβ = ?γ αβ + γ αω + γ βω.                                                    (1.10)

If, instead of two distinct phases, a column of a single liquid is pulled apart, the work of cohesion is:

Wαα = 2γ αω                                                                 (1.11)

as γ αα 0.

When one of the phases is a solid, the expression for work of adhesion (Eq. 1.10) can be combined with the equation for the contact angle (Eq. 1.2). Dupré, in 1869, combined them to give the Young–Dupré equation:

WLS = γ VL γ VS ? γ LS = γ VL(1 + cosθ).                                     (1.12)

Equation (1.12) shows that contact angle is a thermodynamic quantity, which can be related to the work of adhesion and interfacial free energy terms. Its significance is that it relates the work of adhesion to the readily measured quantities, γVL and θ, rather than to the inaccessible interfacial tensions involving the solid surface. When θ values are small, the work of adhesion is high and considerable energy must be spent to separate the solid from the liquid. If θ= 0°, then WSL = 2γLV; if θ= 90°, then WaSL = γLV, and if θ= 180°, then Wa SL= 0, which means that no work needs to be done to separate a completely spherical mercury drop from a solid surface (or a water drop from a super-hydrophobic polymer surface), and indeed these drops roll down very easily even with a 1° inclination angle of the flat substrate.

We note that in Eq. 1.10, 1.11, and 1.12 the definition of work (and symbol W) is different from that usually used as it is work per unit area (Everett, 1972, p. 597). The units are therefore J /m2 (= N /m) compared with J.

1.5 Young-Laplace equation

We will choose to think of γ in terms of energy per unit area. In the absence of gravitational or other fields, a soap bubble is spherical, as this is the shape of minimum surface area for an enclosed volume. A soap bubble of radius r has a total surface free energy of 4πr and, if the radius were to decrease by d r, then the change in surface free energy would be 8πrγd r. Since shrinking decreases the surface energy, the tendency to do so must be balanced by a pressure difference across the film ΔP such that the work against this pressure difference ΔP 4πr2dr is just equal to the decrease in surface free energy. Thus:

ΔP 4πr2d=8πrγd r                                                            (1.13)

          Or 

Young-Laplace equation

Young-Laplace equation

Fig. 1.8 A soap film stretched across a wire frame with one movable side.

Equation 1.10 is a special case of a more general relationship that is the basic equation of capillarity and was given in 1805 by Young and by Laplace. In general, it is necessary to invoke two radii of curvature to describe a curved surface; these are equal for a sphere, but not necessarily otherwise. A small section of an arbitrarily curved surface is shown in Fig.1-9. The two radii of curvature, RI and R2, are indicated in the figure, and the section of surface taken is small enough so that RI and R2 are essentially constant. Now if the surface is displaced a small distance outward, the change in area will be

    ΔΑ=(x+dx)(y+dy)-xy=xdy+ydx                                                   (1.15)

Young-Laplace equation

 

Fig.1.9 Condition for mechanical equilibrium for an arbitrarily curved surface.

The work done in forming this additional amount of surface is then

Work= γ(xdy+ydx)                                                            (1.16)

There will be a pressure difference ΔP across the surface; It acts on the area xy and through a distance dz. The corresponding work is thus

Work=ΔPxyd                                                               (1.17)

From a comparison of similar triangles, it follows that

Young-Laplace equation or Young-Laplace equation                                                             (1.18)

And

Young-Laplace equaion or Young-Laplace equation                                                             (1.19)

If the surface is to be in mechanical equilibrium, the two work terms as given must be equal, and on equating them and substituting in the expressions for dx and dy, the final result obtained is

Young-Laplace equation                   (1.20)

Equation 11-7 is the fundamental equation of capillarity and is well known as Young-Laplace equation. [9]

It is apparent that Eq. 1.20 reduces to Eq. 1.14 for the case of both radii being equal, as is true for a sphere. For a plane surface, the two radii are each infinite and ΔP is therefore zero; Thus there is no pressure difference across a plane surface.

Scan QR codeClose
亚洲成a人v欧美综合天堂_欧美日韩国产在线观看一区二区三区_亚洲国产欧美日韩第一香蕉_久久综合九色欧美综合狠狠
<abbr id="44c4g"></abbr>
  • <rt id="44c4g"></rt>
    <bdo id="44c4g"></bdo>
    <abbr id="44c4g"><source id="44c4g"></source></abbr>
    26uuu国产在线精品一区二区| 免费在线观看不卡| 成人精品视频一区二区三区| 亚洲精品午夜视频| 日韩三级免费观看| 日韩和欧美的一区| 韩国三级hd两男一女| 在线电影一区二区三区| 亚洲大片免费看| 色哟哟视频在线| 欧美一区二区三区在| 日韩福利电影在线| 成人免费av片| 久久嫩草精品久久久久| 国内一区二区视频| 五月婷婷六月香| 中文字幕不卡一区| 本田岬高潮一区二区三区| 一本色道久久综合亚洲aⅴ蜜桃| 国产精品欧美久久久久一区二区 | 国产精品免费久久久久| 国产麻豆精品theporn| 国产亚洲精品久久久久久豆腐| 国产色综合久久| 国产99久久久国产精品潘金网站| 久久久久久久久久网站| 亚洲人成网站影音先锋播放| 91啦中文在线观看| 欧美另类久久久品| 免费观看一级特黄欧美大片| 91精品国自产在线| 国产精品成人免费| 中文字幕avav| 日韩一区二区电影网| 国产专区综合网| 国产又色又爽又高潮免费| 亚洲欧洲美洲综合色网| 国偷自产av一区二区三区麻豆| 欧美精品123区| 久久国产夜色精品鲁鲁99| 免费看一级黄色| 一区二区三区中文字幕精品精品| 91精品又粗又猛又爽| 久久久久青草大香线综合精品| 国产a级毛片一区| 欧美日韩国产小视频| 美女视频网站久久| 99久久99久久精品国产| 亚洲一区在线播放| 丰满大乳奶做爰ⅹxx视频| 国产视频在线观看一区二区三区| 91在线码无精品| 日韩三级免费观看| 成人免费视频国产在线观看| 欧美精品色综合| 国产一区二区三区美女| 欧美性生活久久| 精品一区二区免费看| 日本道精品一区二区三区| 日韩精品乱码av一区二区| 天堂网中文在线观看| 亚洲在线视频一区| 国产精品美女高潮无套| 亚洲卡通欧美制服中文| 在线小视频你懂的| 亚洲精品伦理在线| 婷婷色一区二区三区| 亚洲综合免费观看高清在线观看| 国产一二三四五区| 亚洲女人的天堂| 最近中文字幕在线mv视频在线 | 精品无码人妻一区| 亚洲欧洲色图综合| 中文幕无线码中文字蜜桃| 亚洲视频一二三区| 中文字幕网站在线观看| 亚洲国产一区二区在线播放| 波兰性xxxxx极品hd| 午夜精品视频一区| 三级影片在线看| 黄色精品一二区| 欧美精品乱人伦久久久久久| 成人国产精品免费| 精品国产区一区| 国产吃瓜黑料一区二区| 国产精品久久久久久久久果冻传媒 | 在线观看免费成人| 精品一区二区三区视频| 欧美精品一级二级| 99久久精品99国产精品 | 中文字幕一区二区人妻电影丶| 国产精品免费丝袜| av女人的天堂| 亚洲成人av一区| 日本久久精品电影| 国产成人一级电影| 精品不卡在线视频| 毛茸茸free性熟hd| 一二三区精品视频| 色激情天天射综合网| 国产河南妇女毛片精品久久久| 精品国产一区二区三区不卡| 中文字幕第九页| 一区二区在线电影| 91久久精品一区二区| 成人免费高清视频在线观看| 久久精品男人天堂av| 日本少妇高潮喷水xxxxxxx| 日韩激情视频网站| 91精品国产麻豆| 丰满岳乱妇一区二区| 亚洲国产成人精品视频| 91福利在线播放| 成人av电影在线网| 国产精品国产三级国产普通话三级 | 成人一级片在线观看| 久久久久久久综合色一本| 在线不卡av电影| 青青草原综合久久大伊人精品优势| 欧美日韩久久久久久| 国产探花一区二区三区| 一区二区三区四区乱视频| 色屁屁一区二区| 99re这里都是精品| 亚洲美女一区二区三区| 欧美性视频一区二区三区| 丰满少妇中文字幕| 亚洲午夜三级在线| 欧美日韩国产精品成人| 日本天堂在线播放| 午夜视频一区二区| 欧美一区二区大片| 最近中文字幕在线mv视频在线| 韩国三级在线一区| 国产丝袜欧美中文另类| 一区二区国产精品精华液| 不卡一区二区在线| 亚洲激情一二三区| 8v天堂国产在线一区二区| 国产 中文 字幕 日韩 在线| 日本欧美大码aⅴ在线播放| 精品久久久久久久久久久久包黑料| 美女洗澡无遮挡| 国产在线观看免费一区| 国产精品色婷婷| 在线观看日韩一区| 中文字幕精品视频在线| 精品一区二区免费在线观看| 国产欧美日韩激情| 色婷婷av一区二区三区软件| 国产免费a级片| 美女国产一区二区三区| 国产人久久人人人人爽| 亚洲国产成人精品综合99| 人妻少妇偷人精品久久久任期| 午夜欧美2019年伦理| 精品国产凹凸成av人导航| 很污很黄的网站| 99国产精品久久久久| 五月天激情综合| 久久精品亚洲一区二区三区浴池| 欧美成人777| 最新中文字幕日本| 久久国产成人午夜av影院| 中文字幕欧美区| 欧美性受xxxx黑人xyx性爽| 中文字幕一区二区三区人妻不卡| 国产毛片一区二区| 亚洲激情欧美激情| 精品国产麻豆免费人成网站| 69av.com| 国产 欧美 在线| 波多野结衣在线aⅴ中文字幕不卡| 亚洲一区二区三区不卡国产欧美| 欧美www视频| 色综合天天综合狠狠| 免费看黄色aaaaaa 片| 国产精品18久久久| 亚洲一卡二卡三卡四卡五卡| 久久久www成人免费无遮挡大片| 一本大道av伊人久久综合| 玖玖爱在线精品视频| 国产风韵犹存在线视精品| 亚洲国产精品嫩草影院| 国产午夜亚洲精品不卡| 欧美放荡的少妇| 91高清免费看| 亚洲永久无码7777kkk| av午夜一区麻豆| 久久国产麻豆精品| 亚洲资源中文字幕| 国产三级欧美三级日产三级99| 欧美日韩国产天堂| 亚洲综合网在线| 免费看污黄网站在线观看| 91丨九色丨尤物| 国产麻豆欧美日韩一区| 日韩精品久久理论片| 一区二区三区欧美在线观看| 久久久蜜桃精品|